Low-Rank Matrix Estimation from Rank-One Projections by Unlifted Convex Optimization

نویسندگان

چکیده

We study an estimator with a convex formulation for recovery of low-rank matrices from rank-one projections. Using initial estimates the factors target $d_1\times d_2$ matrix rank-$r$, admits practical subgradient method operating in space dimension $r(d_1+d_2)$. This property makes significantly more scalable than estimators based on lifting and semidefinite programming. Furthermore, we present streamlined analysis exact under real Gaussian measurement model, as well partially derandomized model by using spherical $t$-design. show that both models succeeds, high probability, if number measurements exceeds $r^2 (d_1+d_2)$ up to some logarithmic factors. sample complexity improves existing results nonconvex iterative algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low rank matrix recovery from rank one measurements

We study the recovery of Hermitian low rank matrices X ∈ Cn×n from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaj for some measurement vectors a1, . . . , am, i.e., the measurements are given by yj = tr(Xaja ∗ j ). The case where the matrix X = xx ∗ to...

متن کامل

ROP: Matrix Recovery via Rank-One Projections

Estimation of low-rank matrices is of significant interest in a range of contemporary applications. In this paper, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small low-rank perturbations. Both u...

متن کامل

Orthogonal Rank-One Matrix Pursuit for Low Rank Matrix Completion

In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix ...

متن کامل

Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage

This paper concerns a fundamental class of convex matrix optimization problems. It presents the first algorithm that uses optimal storage and provably computes a lowrank approximation of a solution. In particular, when all solutions have low rank, the algorithm converges to a solution. This algorithm, SketchyCGM, modifies a standard convex optimization scheme, the conditional gradient method, t...

متن کامل

Low-Rank Matrix Completion by Riemannian Optimization

The matrix completion problem consists of finding or approximating a low-rank matrix based on a few samples of this matrix. We propose a novel algorithm for matrix completion that minimizes the least square distance on the sampling set over the Riemannian manifold of fixed-rank matrices. The algorithm is an adaptation of classical non-linear conjugate gradients, developed within the framework o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2021

ISSN: ['1095-7162', '0895-4798']

DOI: https://doi.org/10.1137/20m1330099